DNA damage responses in progeroid syndromes arise from defective maturation of prelamin A

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA damage responses in progeroid syndromes arise from defective maturation of prelamin A.

The genetic diseases Hutchinson-Gilford progeria syndrome (HGPS) and restrictive dermopathy (RD) arise from accumulation of farnesylated prelamin A because of defects in the lamin A maturation pathway. Both of these diseases exhibit symptoms that can be viewed as accelerated aging. The mechanism by which accumulation of farnesylated prelamin A leads to these accelerated aging phenotypes is not ...

متن کامل

Genomic Instability and DNA Damage Responses in Progeria Arising from Defective Maturation of Prelamin A

Progeria syndromes have in common a premature aging phenotype and increased genome instability. The susceptibility to DNA damage arises from a compromised repair system, either in the repair proteins themselves or in the DNA damage response pathways. The most severe progerias stem from mutations affecting lamin A production, a filamentous protein of the nuclear lamina. Hutchinson-Gilford proger...

متن کامل

The role of DNA damage in laminopathy progeroid syndromes.

Progeroid laminopathies are characterized by the abnormal processing of lamin A, the appearance of misshapen nuclei, and the accumulation and persistence of DNA damage. In the present article, I consider the contribution of defective DNA damage pathways to the pathology of progeroid laminopathies. Defects in DNA repair pathways appear to be caused by a combination of factors. These include abno...

متن کامل

Involvement of xeroderma pigmentosum group A (XPA) in progeria arising from defective maturation of prelamin A.

Cellular accumulation of DNA damage has been widely implicated in cellular senescence, aging, and premature aging. In Hutchinson-Gilford progeria syndrome (HGPS) and restrictive dermopathy (RD), premature aging is linked to accumulation of DNA double-strand breaks (DSBs), which results in genome instability. However, how DSBs accumulate in cells despite the presence of intact DNA repair protein...

متن کامل

Lessons learned from DNA repair defective syndromes.

Genomic instability is the driving force behind cancer development. Human syndromes with DNA repair deficiencies comprise unique opportunities to study the clinical consequences of faulty genome maintenance leading to premature aging and premature cancer development. These syndromes include chromosomal breakage syndromes with defects in DNA damage signal transduction and double-strand break rep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Cell Science

سال: 2006

ISSN: 1477-9137,0021-9533

DOI: 10.1242/jcs.03263